CALCULATING THE NONSTEADY HEAT CONDUCTION OF AN

UNBOUNDED PLATE, WITH MIXED BOUNDARY CONDITIONS
A.V. Vurgaft and V.A. Dobrynchenko

UDC 536.21

The solution for the heat-conduction equation

$$
\frac{\partial t(x, \tau)}{\partial \tau}=a \frac{\partial^{2} t(x, \tau)}{\partial x^{2}} \quad\left(-\frac{l}{2}<x<\frac{l}{2}, \tau>0\right)
$$

with the boundary condition

$$
t(x, 0)=t_{0}=\text { const }
$$

and the boundary conditions by means of which we take into consideration the simultaneous effect of radiation and convection heat flows

$$
\begin{gathered}
\frac{\partial t\left(-\frac{l}{2}, \tau\right)}{\partial x}=-\frac{\alpha_{1}}{\lambda_{1}}\left[t_{1}-t\left(-\frac{l}{2}, \tau\right)\right]+\frac{q_{1}}{\lambda_{1}} \\
\frac{\partial t\left(\frac{l}{2}, \tau\right)}{\partial x}=\frac{\alpha_{2}}{\lambda_{2}}\left[t_{2}-t\left(\frac{l}{2}, \tau\right)\right]+\frac{q_{2}}{\lambda_{2}}
\end{gathered}
$$

achieved by an operator method, has the form

$$
\begin{gathered}
\frac{t(x, \tau)-t_{0}}{t_{0}}=\frac{a_{1}+a_{2}+0.5\left(a_{1} \mathrm{Bi}_{2}+a_{2} \mathrm{Bi}_{1}\right)+\left(a_{2} \mathrm{Bi}_{1}-a_{1} \mathrm{Bi}_{2}\right) \frac{x}{l}}{\mathrm{Bi}_{1}+\mathrm{Bi}_{2}+\mathrm{Bi}_{1} \mathrm{Bi}_{2}} \\
+2 \sum_{\left(\mu_{n}\right)}\left\{a_{1}\left[\cos \mu_{n}\left(\frac{1}{2}-\frac{x}{l}\right)+\frac{\mathrm{Bi}_{2}}{\mu_{n}} \sin \mu_{n}\left(\frac{1}{2}-\frac{x}{l}\right)\right]+a_{2}\left[\cos \mu_{n}\left(\frac{1}{2}+\frac{x}{l}\right)+\frac{\mathrm{Bi}_{1}}{\mu_{n}} \sin \mu_{n}\left(\frac{1}{2}+\frac{x}{l}\right)\right]\right\} \\
\times\left\{\left(\mathrm{Bi}_{1} \mathrm{Bi}_{2}+\mathrm{Bi}_{1}+\mathrm{Bi}_{2}-\mu_{n}^{2}\right) \cos \mu_{n}-\left(\mathrm{Bi}_{1}+\mathrm{Bi}_{2}+2\right) \mu_{n} \sin \mu_{n}\right\}^{-1} \exp \left(-\mu_{n}^{2} \mathrm{Fo}\right)
\end{gathered}
$$

when

$$
a_{1}=\left(\mathrm{Bi}_{1}-\mathrm{Ki}_{1}\right)\left(\frac{t_{1}}{t_{0}}-1\right), \quad a_{2}=\left(\mathrm{Bi}_{2}-\mathrm{Ki}_{2}\right)\left(\frac{t_{2}}{t_{0}}-1\right)
$$

and

$$
a_{1}^{2}-a_{2}^{2} \neq 0 ; \quad \mathrm{Bi}_{1}^{2}+\mathrm{Bi}_{2}^{2} \neq 0
$$

The roots μ_{n} of the characteristic equation

$$
\frac{\operatorname{tg} \mu}{\mu}=\frac{B i_{1}+B i_{2}}{\mu^{2}-\mathrm{Bi}_{1} B i_{2}}
$$

are presented in Table 1.

Technical Institute of the Fishing Industry, Astrakhan. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 15, No. 5, pp. 931-933, November, 1968. Original article submitted July 17, 1968.
© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

TABLE 1. The Roots μ_{n} of the Characteristic Equation

0.00	$\begin{aligned} & 0.000 \\ & 3.141 \\ & 6.283 \end{aligned}$		8.00	10.0	20.0	40.0		80.0	100.0	
0,20	0,433	0,622	2,529	2,558	2,684	2,743	2,763	2,773	2,779	8,00
	3,204	3,264	5,141	5,223	5,423	5,540	5,581	5,602	5,615	
	6,315	6,346	7,870	7,969	8,234	8,407	8,471	8,503	8,523	
0,40	0,593	0,750	0,866	2,628	2,738	2,799	2,820	2,830	2,837	10,0
	3,264	3,322	3,377	5,307	5,511	5,631	5,673	5,694	5,708	
	6,346	6,377	6,408	8,067	8,335	8,510	8,574	8,607	8,627	
0,60	0,705	0,848	0,956	1,044	2,858	2,923	2,946	2,958	2,965	20,0
	3,320	3,377	3,431	3,483	5,726	5,853	5,898	5,921	5,935	
	6,377	6,408	6,438	6,468	8,612	8,794	8,896	8,986	8,916	
0,80	0,791	0,926	1,030	1,116	1,186	2,992	3,016	3,028	3,036	40,0
	3,374	3,429	[3,482	3,533	3,581	5,986	6,033	6,057	6,072	
	6,407	6,438	6,468	6,498	6,527	8,983	9,052	9,088	9,110	
1,00	0,860	0,990	1,092	1,176	1,247	1,307	3,040	3,052	3,060	60,0
	3,426	3,478	13,531	3,580	3,628	3,673	6,081	6,106	6,120	
	6,437	6,468	6,497	6,527	6,556	6,585	9,123	9,159	9,181	
2,00	1,077	1,197	1,295	1,378.	1,449	1,509	1,721	3,065	3,072	80,0
	3,644	3,692	3,739	3,785	3,829	3,871	4,058	6,130	6,145	
	6,578	6,607	6,636	6,665	6,693	6,720	6,951	9,196	9,218	
4,00	1,265	1,382	1,480	1,564	1,637	1,700	1,926	2,154	3,080	100,0
	3,935	3,980	4,023	4,065	4,106	4,146	4,322	4,578	6,160	
	6,814	6,841	6,869	6,896	6,922	6,948	7,073	7,287	9,240	
6,00	1,350	1,467	1,566	1,651	1,725	1,790	2,025	2,265	2,385	6,00
	4,112	4, 155	4,197	4,238	4,278	4,316	4,489	4,744	4,911	
	6,992	7,019	7,045	7,071	7,097	7,123	7,244	7,454	7,618	
8,00	1,398	1,515	1,615	1,700	1,776	1,842	2,082	2,331	2,455	8,00
	4,226	4,269	4,311	4,351	4,391	4,429	4,601	4,856	5,025	
	7,126	7,152	7,178	7,204	7,229	7,254	7,374	7,581	7,744	
10,0	1,429	1,546	1,646	1,733	1,808	1,875	2,119	2,373	2,501	10,0
	4,306	4,348	4,390	4,430	4,469	4,507	4,679	4,935	5,106	
	7,228	7,254	7,280	7,305	7,330	7,355	7,474	7,679	7,842	
20,0	1,496	1,614	1,714	1,802	1,880	1,948	2,199	2,466	2,603	20,0
	4,491	4,534	4,575	4,615	4,654	4,692	4,864	5,124	5,301	
	7,495	7,521	7,546	7,571	7,596	7,620	7,738	7,942	8,106	
40,0	1,533	1,650	1,752	1,840	1,918	1,987	2,243	2,517	2,658	40,0
	4,598	4,640	4,681	4,721	4,760	4,798	4,971	5,235	$5,414$	
	7,665	7,690	7,715	7,740	7,765	7,789	7,907	8,112	8,277	
60,0	1,545	1,663	1,764	1,653	1,931	2,000	2,258	2,535	2,677	60,0
	4,635	4,677	4,718	4,759	4,798	4,836	5,009	5,274	5,455	
	7,726	7,751	7,776	7,801	7,826	7,851	7,968	8,174	8,340	
80,0	1,551	1,670	1,770	1,860	1,937	2,007	2,265	2,543	2,686	80,0
	4,654	4,670	4,737	4,777	4,816	4,854	5,028	5,293	5,475	
	7,757	7,782	7,807	7,833	7,857	7,881	7,999	8,205	8,371	
100,0	1,555	1,673	1,775	1,863	1,948	2,012	2,270	2,548	2,693	100,0
	4,666	4,708	4,749	4,789	4,828	4,866	5,039	5,305	5,487	
	7,776	7,801	7,827	7,851	7,876	7,901	8,018	8,224	8,391	
	0.000	0. 20	0.40	0.60	0.80	1.00	2.00	4.00	6.00	$B i_{1}$

